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The effect of computerised decision support alerts tailored 
to intensive care on the administration of high-risk drug 
combinations, and their monitoring: a cluster randomised 
stepped-wedge trial
Tinka Bakker*, Joanna E Klopotowska*, Dave A Dongelmans, Saeid Eslami, Wytze J Vermeijden, Stefaan Hendriks, Julia ten Cate, Attila Karakus, 
Ilse M Purmer, Sjoerd H W van Bree, Peter E Spronk, Martijn Hoeksema, Evert de Jonge, Nicolette F de Keizer, Ameen Abu-Hanna, 
on behalf of the SIMPLIFY study group†

Summary
Background Drug–drug interactions (DDIs) can harm patients admitted to the intensive care unit (ICU). Yet, clinical 
decision support systems (CDSSs) aimed at helping physicians prevent DDIs are plagued by low-yield alerts, causing 
alert fatigue and compromising patient safety. The aim of this multicentre study was to evaluate the effect of tailoring 
potential DDI alerts to the ICU setting on the frequency of administered high-risk drug combinations.

Methods We implemented a cluster randomised stepped-wedge trial in nine ICUs in the Netherlands. Five ICUs 
already used potential DDI alerts. Patients aged 18 years or older admitted to the ICU with at least two drugs 
administered were included. Our intervention was an adapted CDSS, only providing alerts for potential DDIs 
considered as high risk. The intervention was delivered at the ICU level and targeted physicians. We hypothesised 
that showing only relevant alerts would improve CDSS effectiveness and lead to a decreased number of administered 
high-risk drug combinations. The order in which the intervention was implemented in the ICUs was randomised by 
an independent researcher. The primary outcome was the number of administered high-risk drug combinations per 
1000 drug administrations per patient and was assessed in all included patients. This trial was registered in the 
Netherlands Trial Register (identifier NL6762) on Nov 26, 2018, and is now closed.

Findings In total, 10 423 patients admitted to the ICU between Sept 1, 2018, and Sept 1, 2019, were assessed and 
9887 patients were included. The mean number of administered high-risk drug combinations per 1000 drug 
administrations per patient was 26·2 (SD 53·4) in the intervention group (n=5534), compared with 35·6 (65·0) in the 
control group (n=4353). Tailoring potential DDI alerts to the ICU led to a 12% decrease (95% CI 5–18%; p=0·0008) in 
the number of administered high-risk drug combinations per 1000 drug administrations per patient, after adjusting 
for clustering and prognostic factors.

Interpretation This cluster randomised stepped-wedge trial showed that tailoring potential DDI alerts to the ICU 
setting significantly reduced the number of administered high-risk drug combinations. Our list of high-risk drug 
combinations can be used in other ICUs, and our strategy of tailoring alerts based on clinical relevance could be 
applied to other clinical settings.
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Introduction  
Drug–drug interactions (DDIs) are an important cause 
of patient harm.1 Patient harm occurs when two drugs 
known to interact are co-administered and subsequently 
their effect is increased or decreased, causing drug 
toxicity or therapy failure.2 Patients admitted to the 
intensive care unit (ICU) are more prone to adverse drug 
events compared with patients on non-ICU wards.3 The 
observed rate of adverse drug events was 11·5 per 
1000 patient-days in general wards compared with 
19·4 in the ICU in the USA in 1995.4 Approximately 16% 
of all adverse drug events in the ICU are caused by 
DDIs.5–7

A potential DDI refers to the administration of two 
drugs known to interact. The term potential implies 
uncertainty regarding whether the exposure will lead to 
an actual DDI, harming the patient. The occurrence of 
an interaction depends on factors such as the patient’s 
renal and liver function, and the dose and duration of the 
co-administration. For potential DDIs that are considered 
clinically relevant in the ICU, the term high-risk drug 
combination is used, indicating exposure to a 
combination that might result in an actual DDI with 
clinically relevant consequences harming the patient.

Several studies have shown that clinical decision 
support systems (CDSSs) help to prevent DDIs and 
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thereby adverse drug events.8,9 CDSSs support clinicians 
in safe prescribing by showing potential DDI alerts 
during drug order entry.8 The main follow-up actions 
after an alert are either stopping the interacting drugs, or 
continuing and monitoring the patient.

However, current CDSSs are plagued by an overload of 
low-yield potential DDI alerts (ie, those of a low 
relevance).10 When CDSSs produce numerous low-yield 
alerts, this desensitises clinicians and leads to alert 
fatigue, high over-ride rates, and the risk of missing 
relevant alerts, which compromises patient safety.10–12

In the ICU, approximately 90% of the potential DDI 
alerts are overridden, and 84% of these over-rides seem 
appropriate because the alert is low yield.13,14 Additionally, 
the critical condition of patients in the ICU might require 
the administration of drugs known to interact, despite 
the risk of harm. Moreover, patients in the ICU are 
extensively and continuously monitored. Although not 
fail-proof, this monitoring facilitates the early detection 
of adverse consequences of DDIs, allowing for timely 
appropriate actions to prevent further harm. Therefore, it 
is important to consider the setting in which the potential 
DDI alerts operate.

We hypothesised that tailoring potential DDI alerts to 
the ICU setting, by only showing alerts that are clinically 
relevant in the ICU setting, would increase attention 
towards these alerts and, in turn, would improve CDSS 

effectiveness and lead to a decreased number of high-risk 
drug combinations being administered (appendix p 2).12 
When the administration of a high-risk drug combination 
cannot be avoided, patient monitoring for potential 
consequences of such combinations might prevent or 
ameliorate patient harm. Monitoring might include 
monitoring laboratory values, reviewing electro
cardiograms (ECGs), and therapeutic drug monitoring. 
Recommended monitoring actions are shown in the 
alerts. Hence, in addition to evaluating the frequency of 
high-risk drug combinations, it is important to evaluate 
whether potential DDIs were monitored appropriately.

Therefore, the aim of this multicentre study was to 
evaluate the effect of tailoring potential DDI alerts to the 
ICU setting on the frequency of administered high-risk 
drug combinations, proportion of appropriately 
monitored high-risk drug combinations, and length of 
stay in the ICU.

Methods  
Study design  
To evaluate the effect of tailoring potential DDI alerts, we 
implemented a cluster randomised stepped-wedge trial. 
The study period was from Sept 1, 2018, to Sept 1, 2019. 
The intervention was rolled out sequentially to nine ICUs, 
with the intervention staggered by 1 month between each 
ICU (figure 1). During the first 2 months, all ICUs were in 

Research in context

Evidence before this study
Drug–drug interactions (DDIs) are a notable cause of patient 
harm. Patients admitted to the intensive care unit (ICU) are 
more prone to adverse drug events compared with patients 
on non-ICU wards. We searched MEDLINE for studies in 
English published from Jan 1, 2010, to April 13, 2017, 
on information technology-based interventions to improve 
DDI outcomes. We subsequently conducted an update of this 
search for studies published in the period April 13, 2017, 
to Oct 9, 2019. We used the search terms “drug interaction”, 
“medication interaction”, “decision support system”, “expert 
system”, and “prescribing system”. We excluded studies that 
focused on the feasibility, validity, acceptability, or 
description of information technology-based applications. 
We found that clinical decision support systems (CDSSs) are 
plagued by an overload of low-yield potential DDI alerts. 
Producing many low-yield alerts desensitises clinicians and 
leads to alert fatigue, high over-ride rates, and the risk of 
missing relevant alerts, thereby compromising patient safety. 
In the ICU, approximately 90% of the potential DDI alerts are 
over-ridden, and 84% of these over-rides appear justified 
because of the perceived low yield of the potential DDI alerts. 
Furthermore, we found no studies that evaluated the effect of 
tailoring potential DDI alerts to the ICU setting on high-risk 
drug combination frequency, patient monitoring, or ICU 
length of stay.

Added value of this study
This cluster randomised stepped-wedge trial showed that 
tailoring potential DDI alerts to the ICU setting, by only 
producing alerts that are clinically relevant in this setting, 
improved CDSS effectiveness and led to a 12% decrease in the 
number of administered high-risk drug combinations (95% CI 
5–18%; p=0·0008). Additionally, patient monitoring for 
potential consequences of DDIs improved by 9% (6–11%; 
p<0·0001), and the length of stay in the ICU was reduced by 
6% (2–10%; p=0·0021). These findings contribute to the goal of 
intensivists to avoid high-risk drug combinations if possible 
and, if not possible, to prescribe them while being aware of and 
adequately monitoring the potential consequences.

Implications of all the available evidence
Tailoring potential DDI alerts to a specific setting can reduce the 
administration of high-risk drug combinations and length of stay 
in the ICU, and improve patient monitoring for the potential 
consequences of DDIs. Our results are relevant to clinicians, 
hospital pharmacists, CDSS developers, managers, quality-of-care 
officers, and researchers in the ICU setting. Other ICUs could use 
our list of high-risk drug combinations to tailor their potential 
DDI alerts and improve CDSS effectiveness. Additionally, our 
results might encourage other medical practitioners to establish a 
set of high-risk drug combinations for patients in other specific 
settings, such as in neonatology, paediatrics, or oncology.

See Online for appendix
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the control group. By the last month, all ICUs were in the 
intervention group. To analyse the intervention’s 
effectiveness, data in the control section of the wedge were 
compared with data in the intervention section (figure 1). 
This study was conducted in nine mixed medical and 
surgical closed format ICUs in the Netherlands.

We chose the stepped-wedge design because, when 
compared with a parallel cluster randomised controlled 
trial, it is more powerful with a small number of clusters 
but a large number of patients per cluster, which aligns 
with our situation.17 We designed the intervention at the 
ICU level, because of the expected contamination (ie, the 

effects of the CDSS spreading to the control group) at the 
patient or ICU physician level.

This study is reported according to the Consolidated 
Standards of Reporting Trials 2010 extension for stepped-
wedge cluster randomised trials, and the reporting of 
studies conducted using observational routinely collected 
health data statement for pharmacoepidemiology 
(appendix p 7). The study protocol was reviewed by the 
Medical Ethics Committee of the Amsterdam University 
Medical Centers (the Netherlands) and has been published 
previously.12 This committee provided a waiver from 
formal approval (W16_391 number 17·001) and informed 

Figure 1: Graphical summary of the development and implementation of the MiM+ intervention
DDI=drug–drug interaction. ICU=intensive care unit. MiM+=Medication Interaction Module+.

Intervention MiM+

Development Implementation

1 Analysis of potential DDIs in the ICU15

• Analysis of 2282974 medication administrations of 
103871 admissions in  13 ICUs

• Number of potential DDIs
Per 1000 medication administrations=mean 70·1 (SD 90·5)
Per admission=mean 2·2 (SD 4·1)

• Detected number of potential DDI types=270

2 Defining the clinical relevance of  potential DDIs for the ICU setting16

• Modified Delphi procedure 
Two rounds
Intensivists and hospital pharmacists 

• Assessing the clinical relevance of 148 potential DDI types 
√ With agreement=139 (94%) of 148 potential DDI types
√ Low-yield potential DDI types=53 (38%) of 139 

   

3 Cluster randomised stepped-wedge trial (this study)

• Adjustment of potential DDI alerts according to Delphi study 
• Resulting in MiM+, our intervention 

ICU with MiM in baseline
Clinically relevant potential DDIs: kept or turned on 
Low-yield potential DDI alerts: turned off
ICU without MiM in baseline
Clinically relevant potential DDIs: turned on

• An on-site training about MiM+ by two researchers 

MiM+ 

ICU 1
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ICU 8
ICU 7
ICU 6
ICU 5
ICU 4
ICU 3
ICU 2

ICU 9

October November December January February March April JuneMay AugustJuly

Implementation 2018–19

MiM+ 
MiM+ 

MiM+ 
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MiM+ 
MiM+ 

MiM+ 
MiM+ 

MiM+ 

´

Control period
Intervention period

Implementation of MiM+ and trainingMiM+ Baseline situation with MiM
Baseline situation without MiM

?

Drug–drug interaction
Tacrolimus plus CYP3A4 inhibitors
Tacrolimus 1 mg and diltiazem 60 mg
FL_12345 LN_98754 (23876)

Cancel, back to orderOK, prescribe anyway

Drug-drug interaction 1 of 1

The toxicity of tacrolimus can increase. The concentration of tacrolimus in blood 
increases due to CYP3A4 inhibitors. 

1. Choose an alternative for a CYP3A4 inhibitor, preferably in consulation with 
the prescriber of tacrolimus. If an alternative treatment is not possible then:

2. Monitor tacrolimus blood concentration: when starting a CYP3A4 inhibitor, 
when changing the dose of a CYP3A4 inhibitor, or when stopping a CYP3A4 
inhibitor. After discontinuation of a CYP3A4 inhibitor, tacrolimus blood 
concentration will decrease again.

Routine monitoring in the ICU, no additional precautions needed
Will monitor extra and/or adjust dosage/administration time
No precautions possible, however, the patient's situation requires this action
Other, see free text field

Level 4

Example of potential DDI alert of MIM+ | source: MiM - module IteMedical



Articles

4	 www.thelancet.com   Published online January 20, 2024   https://doi.org/10.1016/S0140-6736(23)02465-0

consent, because this trial does not fall within the scope of 
the Dutch Medical Research Human Subjects Act.

The trial was registered in the Netherlands Trial Register 
(identifier NL6762) on Nov 26, 2018. ICUs were invited to 
participate before registration, because this study was part 
of a larger project (figure 1).15,16 ICUs were invited early, to 
allow enough time for the preparation of the 
implementation of our intervention together with the 
software supplier. An independent researcher performed 
the computerised random assignment on Sept 12, 2018, 
and ICUs were informed of their starting day before 
Nov 1, 2018. According to the schedule, the study started 
on Nov 1, 2018, when the first ICU started the intervention. 
The trial registration was published 3 weeks later, on 
Nov 26. No modifications were made to the content of the 
registration between Sept 12 and Nov 26.

Assessment of safety and adverse events  
A Data Safety Management Board was not established in 
this study. This decision was carefully considered and 
discussed with the participating ICUs. We decided not to 
establish a Data Safety Management Board because our 
intervention was considered a low-risk intervention. It did 
not involve any experimental drugs or procedures, and 
our trial does not fall within the scope of the Dutch 
Medical Research Human Subjects Act, as established by 
the Medical Ethics Committee. This committee did not 
require the establishment of a Data Safety Management 
Board. In addition, the intervention did not pose any 
immediate safety concerns or potential harm to patients. 
In our trial, the intervention was implemented at the level 
of clusters (ICUs), rather than individual patients. Since 
the intervention primarily targeted ICU physicians, and 
there was no direct involvement of individual patients, the 
need to monitor individual patient safety was low. 
Additionally, such monitoring was already part of routine 
care in the ICUs. Lastly, at the start of the trial, all ICUs 
were provided with on-site training about the intervention, 
and all ICU site coordinators were asked by the researchers 
to report any unintended negative consequences on 
patients related to the intervention. No unintended 
negative consequences were reported during the trial.

Participants  
For inclusion, we required that the ICU used the patient 
data management system MetaVision ICU (iMDSoft) 
during the whole trial period. Integrating our intervention 
and extracting data from various patient data 
management system types would require resources 
beyond the available funding; and, additionally, the 
patient data management system type was not expected 
to influence the effect of our intervention. All ICUs using 
MetaVision were invited to participate via the National 
Intensive Care Evaluation (NICE) registry network. 
Patients aged 18 years or older admitted to the ICU with 
at least two drug administrations during their admission 
were included.

Randomisation and masking  
The order in which the intervention was implemented in 
the ICUs was randomly assigned, reducing the risk of bias, 
thus increasing the internal validity of the method. An 
independent researcher not involved in this study 
performed the computerised randomisation. Masking was 
not feasible, because the ICU staff and researchers involved 
were aware of the change from control to intervention.

Intervention
Our intervention was a restricted version of the 
Medication Interaction Module (MiM), a CDSS developed 
by ItéMedical. ICUs using the patient data management 
system MetaVision have the option to use MiM, which 
provides potential DDI alerts or duplicate order alerts, or 
both. Five of the nine participating ICUs used the MiM. 
MiM is based on the G-Standaard, an evidence-based 
professional database developed by the Scientific Institute 
of Dutch Pharmacists. The G-Standaard is used in all 
Dutch hospitals and contains information about potential 
DDIs and their management.18 The interactions included 
in the G-standaard are listed in the appendix (pp 17–29).

Our intervention, referred to as MiM+, provided alerts 
only for potential DDIs considered clinically relevant to 
the ICU (ie, high-risk drug combinations). An alert 
example is shown in the appendix (p 13). To establish 
clinical relevance, we applied a modified Delphi procedure 
with an expert panel consisting of intensivists and hospital 
pharmacists (among which included AK, EdJ, IMP, JtC, 
MH, PES, SH, and WJV), assessing the clinical relevance 
of 139 potential DDIs for the ICU setting. We found that 
86 of 139 potential DDIs (62%) were considered clinically 
relevant in the ICU setting (figure 1; appendix pp 30–32). 
For nine potential DDIs, agreement on clinical relevance 
was not reached in the Delphi study (appendix p 33). This 
study is described elsewhere.16 The adaptation to MiM+ 
differed for ICUs already using the MiM (n=5) and ICUs 
not using the MiM (n=4).

For ICUs without MiM, the MiM+ was installed and 
configured by ItéMedical according to the Delphi results: 
potential DDI alerts for drug combinations deemed high 
risk were turned on. Alerts for drug combinations 
deemed low yield were kept off.

For ICUs already using MiM, the procedure was similar: 
alerts for drug combinations assessed as high risk in the 
Delphi study were turned or left on, alerts for drug 
combinations deemed as low yield were turned or left off. If 
ICUs used potential DDI alerts for drug combinations that 
were not evaluated in our Delphi study or alerts for duplicate 
orders, or both, then these were left on, because withholding 
these alerts might potentially negatively affect patient safety. 
For the nine potential DDIs without agreement on clinical 
relevance, the ICUs were permitted to decide whether to 
turn alerts on or off, given their patient population profile.

The intervention was delivered at the ICU level. The 
potential DDI alerts were targeted at physicians, because 
in the Dutch ICU they are the only prescribers. We 
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provided on-site training about MiM+ at the start of the 
intervention.

Outcomes  
The primary outcome was the number of administered 
high-risk drug combinations per 1000 drug 
administrations per patient. Secondary outcomes were 
the length of stay in the ICU and the proportion of 
appropriately monitored high-risk drug combinations.

An administered high-risk drug combination was defined 
as the administration of an interacting drug combination 
that was considered clinically relevant in the ICU setting, 
henceforth referred to as a high-risk drug combination. 
Appropriate monitoring was defined as monitoring 
according to the instructions in the G-Standaard.

The monitoring strategies for the top 15 most common 
high-risk drug combinations, and evaluation method and 
definition of appropriate monitoring, are explained in 
the appendix (pp 35–36).

To enable comparison with other studies, we also 
reported the proportion of patients with at least one high-
risk drug combination and the number of high-risk drug 
combinations per patient. Additionally, the appendix 
(pp 37–39) reports the proportion of patients with at least 
one drug combination, and the number of drug 
combinations per patient (including both high-risk and 
low-yield drug combinations).

Data collection  
To evaluate the effect of the intervention, we used routinely 
recorded medication administrations, ECG data, and 
laboratory data from MetaVision. We linked these to the 
NICE Registry to obtain patient characteristics such as age, 
comorbidities, and severity of illness for all patients 
admitted to the ICU during the study period. Linking with 
the NICE Registry also served as a validation step, because 
the NICE Registry provides continuous and comprehensive 
registration of all ICU admissions from participating ICUs 
and thoroughly validate the data. Data were collected at the 
admission level with a coded admission number as the 
identifier (appendix p 14).

Detection of high-risk drug combinations  
To detect potential DDIs in the drug administration data, 
a computerised algorithm was developed on the basis of 
the G-Standaard. In the algorithm, we defined a potential 
DDI as the administration of two drugs known to 
interact, administered within a 24-h interval. The 
algorithm was applied to all included patients. Only 
drugs that were actually administered were considered. 
All drugs with a systemic route of administration were 
considered. We validated the algorithm through unit 
testing (appendix p 15).

Statistical analysis  
To calculate the power of our stepped-wedge trial, the 
statistical software PASS 15·0.4 was used. We estimated a 

relative reduction of 20% of the number of high-risk drug 
combinations. According to a systematic review assessing 
the effects of information technology interventions on 
DDI-related outcomes, relative reductions ranged from 15 
to 29%.9 On the basis of a preliminary analysis, the 
number of high-risk potential DDIs per 1000 medication 
administrations was estimated at 42·0 (event rate). With a 
relative reduction of 20%, the event rate after the 
intervention was estimated at 33·6. A senior intensivist 
involved in the study (DAD), as an indicator of face 
validity, considered a 20% reduction to be clinically 
relevant. Calculations showed that 83% power was 
required to detect a relative reduction of 20%, considering 
an estimated intra-cluster correlation of 0·12, which was 
based on previous randomised controlled trials on 
different outcomes with data from the NICE Registry. The 
power calculations were based on the Poisson distribution 
of the primary outcome, the test statistic used was the 
two-sided Wald Z test, and the significance level of the 
test was set at 0·05 (appendix p 16).

Analyses in this study were performed on an intention-
to-treat basis. Continuous variables were presented as 
mean and SD if they were normally distributed, or 
median and IQR if otherwise distributed. Normality was 
tested with a Shapiro–Wilks test. Categorical variables 
were presented as numbers and percentages. For 
hypothesis testing, a probability of less than 0·05 was 
considered statistically significant. All statistical tests 
were two-sided. The R statistical software environment 
version 4.0.3 was used with the following packages: lme4 
(version 1.1–31), lmerTest (version 3.1–3), MASS (version 
7.3–58.1), tidyverse (version 1.3.2), stats (version 4.2.1), 
and glmmTMB (version 1.1.7).

To assess the effect of the MiM+ on the primary and 
secondary outcomes, we used various generalised linear 
mixed-effects models with random intercepts for each 
ICU, except for the secondary outcome of appropriate 
monitoring where the group differences were compared 
with a χ² test. For the primary outcome we used the 
negative binomial distribution family and the log link 
function, because the Poisson models showed over
dispersion. Variables were spline-transformed if needed to 
satisfy model assumptions. The models for the secondary 
outcomes are shown in the appendix (pp 37–39). To decide 
whether adjusting for temporal effects or the previous use 
of the MiM was necessary, we assessed the effect of time 
and of previous MiM use in the control group and 
intervention group separately, independent of the effect of 
the intervention. In both groups, the effect of time as well 
as the effect of previous MiM use were not significant. 
Therefore, we did not adjust for temporal effects or 
previous MiM use.

We used a null model, M0, without adjustments. Model 
M1 was adjusted for variables that were significantly 
different between the intervention and control group. On 
the basis of a hospital pharmacist’s and intensivist’s 
expertise (JEK and DAD), model M2 was adjusted for the 
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prognostic factors age, sex, admission type, cardiovascular 
disease, immunodeficiency, and Acute Physiology And 
Chronic Health Evaluation IV (APACHE IV) score, 
because these could affect the number of high-risk drug 
combinations.

Deviations from the protocol  
On four points, we deviated from the protocol. First, we 
specified that we would use generalised estimating 
equations to correct for clustering. However, because 
mixed-effects models better handle variations in effect 
per cluster, because those are modelled separately, we 
used mixed-effects models to correct for clustering. Both 
methods are appropriate for clustering adjustment. 
Second, we specified that patients with any drug 
administered would be included. After contemplation we 
decided to include only patients with at least two 
administered drugs (98·6% [9904/10 041]), because only 
these patients could be exposed to an interaction. Third, 
we did not evaluate the over-ride rate of high-risk drug 
combination alerts as a secondary outcome. During the 
preparation phase of the trial, we gained a more 
comprehensive understanding of the MiM functionality. 
We learned that over-ride data were not reliable for 
assessing whether our intervention resulted in behaviour 
change. In the MiM, prescribers might click on “cancel” 
just to dismiss an alert, or might click on “prescribe 
anyway” but initiate appropriate action later. Therefore, 
we refrained from collecting alert-related data. Fourth, we 
did not assess adverse drug events related to DDIs during 
the trial. Assessing adverse drug events requires patient 
chart reviews and causality assessments, for which a long 
period of time and high number of clinical experts are 
needed, and therefore was unfeasible during the trial. 
Instead, we conducted a small-scale study after the trial to 
explore a novel method for measuring adverse drug 
events related to DDIs on the basis of electronic triggers.19

Role of the funding source  
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results  
Nine of the 12 ICUs using MetaVision agreed to 
participate in this study. Three ICUs could not participate 
because their hospital was migrating to another 
hospital-wide electronic health record system. The nine 
participating ICUs had an overall capacity of 156 beds, 
and 11 200 admissions (median 854; IQR 793–1785) 
combined yearly, according to data from the NICE 
Registry from 2017. One ICU was situated in a university 
hospital. Regarding the nine potential DDIs without 
agreement on clinical relevance, the ICUs mostly chose 
to turn alerts on (appendix p 33).

10 423 patients admitted to the ICU between 
Sept 1, 2018, and Sept 1, 2019, were included. Of those, 
10 041 (96·3%) were linked with the NICE Registry data. 
The other 382 patients (3·7%) were excluded, because 
they did not match the inclusion and exclusion criteria of 
the NICE Registry such as excluding patients admitted 
for less than 4 h. Subsequently, 137 patients (1·3%) were 
excluded because they had less than two drug 

Figure 2: Flow of patient inclusion
NICE=National Intensive Care Evaluation.

10 423 patients admitted to the 
               intensive care unit within the
  study period

382 not linked with NICE Registry database (3·7%)

10 041 linked with NICE database

137 patients with only one drug administration (1·4%)

9904 patients included for analysis

9887 patients included for analysis

17 had incomplete record for analysis (0·2%)

Control group (n=5534) Intervention group (n=4353)

Age, years*

Mean 63·2 (15·3) 63·2 (15·9)

Median 66·0 (55–74) 66·0 (55–75)

Sex

Female 2114 (38·2%) 1695 (38·9%)

Male 3420 (61·8%) 2658 (61·1%)

APACHE IV score*

Mean 57·2 (27·6) 56·5 (27·1)

Median 51·0 (38–71) 51·0 (37–70)

Admission type

Medical 2480 (44·8%) 2078 (47·7%)

Emergency surgical 670 (12·1%) 451 (10·4%)

Elective surgical 2384 (43·1%) 1824 (41·9%)

Chronic conditions

Chronic renal failure 286 (5·2%) 252 (5·8%)

Chronic obstructive pulmonary disease 543 (9·8%) 580 (13·3%)

Respiratory failure 182 (3·3%) 139 (3·2%)

Cardiovascular disease 174 (3·1%) 113 (2·6%)

Cirrhosis 89 (1·6%) 53 (1·2%)

Haematological malignancy 92 (1·7%) 74 (1·7%)

AIDS 3 (0·1%) 1 (<0·1%)

Immunodeficiency 586 (10·6%) 487 (11·2%)

Data are n (%), mean (SD), or median (IQR). APACHE IV=Acute Physiology And Chronic Health Evaluation IV. *Age and 
APACHE IV score were not normally distributed and therefore the median and IQR were reported. For completeness we 
also reported the mean and SD.

Table 1: Patient characteristics
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administrations, and 17 patients (0·2%) were excluded 
because of missing data, resulting in a final dataset of 
9887 patients (figure 2). Table 1 shows the patient 
characteristics of included patients, divided between the 
control and intervention groups. The Shapiro–Wilks 
normality test for age and APACHE IV score were 
significant (p<0·0001), hence these variables were 
reported with their median and IQR. Admission types 
and the occurrence of the chronic condition chronic 
obstructive pulmonary disease (COPD) varied between 
the groups. There were slightly more patients admitted 
for medical reasons in the intervention group, including 
more patients with COPD, and slightly fewer patients 
admitted for emergency or elective surgical reasons, 
compared with the control group. Although the 
differences were small, we corrected for the differences 
in admission type and COPD comorbidity in model M1.

In the 9887 included patients, a total of 199 148 drug 
administrations were identified, with a median number 
of drug administrations per patient of 15 (IQR 10–24). 
The median number of high-alert medications according 
to the Institute of Safe Medical Practices was 4 (2–8) and 
95·1% (9400/9887) of included patients had at least one 
high-alert drug administered. Of all patients, 8073 high-
risk drug combinations were detected, corresponding to 
59 types of combinations. On average, patients had 0·82 
high-risk drug combinations, and 34·9% (3454/9887) of 
patients were exposed to at least one high-risk drug 
combination. The top three high-risk drug combinations 
identified in all included patients consisted of: 

combinations of two QT-prolonging agents (ie, agents 
that prolong the interval between the Q and T waves of 
the heartbeat), bearing the potential risk of cardiac 
arrhythmias (73·2% [5907/8073]); combinations of non-
steroidal anti-inflammatory drugs (NSAIDs) and 
corticosteroids, bearing the potential risk of 
gastrointestinal bleeding (15·9% [1280/8073]); and 
combinations of NSAIDs and serotonergic agents (1·5% 
[124/8073]) and NSAIDs and salicylic acid (up to 100 mg; 
1·5% [119/8073]), also carrying the potential risk of 
gastrointestinal bleeding.

A breakdown of the number of patients per month per 
ICU is shown in the appendix (p 34). During the 
intervention period, no changes to MiM+ were made in 
any participating ICU.

In the control group of 5534 patients, 5062 high-risk 
drug combinations were detected in 2122 patients (38·3%). 
In the intervention group of 4353 patients, 3011 high-risk 
drug combinations were detected in 1332 patients (30·6%). 
Figure 3 depicts the top 15 most frequently occurring high-
risk drug combinations and compares the percentage of 
patients with these combinations between the control and 
the intervention group. The combination of two QT-
prolonging agents had the largest decrease of high-risk 
drug combinations in the control group (1589 of 5534; 
28·7%) compared with the intervention group (930 of 
4353; 21·4%) of all combinations.

The mean number of high-risk drug combinations per 
1000 drug administrations per patient was 35·6 (SD 65·0) 
in the control group compared with 26·2 (53·4) in the 

Figure 3: Comparison of the percentage of patients with a high-risk drug combination for the 15 most frequent types of high-risk drug combinations in the 
intervention and control group
Please note the different scales used for the top two and bottom 13 types of drug combinations. NSAIDs=non-steroidal anti-inflammatory drugs.
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intervention group. The median was 0 (IQR 0–38·5) in 
the intervention group, compared with 0 (0–51·7) 
in the control group.

We used a generalised linear mixed-effects model to 
assess the effect of our intervention on the primary 
outcome. Random intercepts were normally distributed 
and the relationship between all covariates and the 
outcome was adequate after spline transformation of 
age. Aside from the unadjusted M0 model, we adjusted 
for prognostic factors, providing a robust analysis. On 
the basis of differences in the data, model M1 was 
adjusted for COPD comorbidity and admission type, 
because these two variables varied slightly but 
significantly between the intervention and control group. 
Model M2 was adjusted for age, sex, admission type, 
cardiovascular disease, immunodeficiency, and APACHE 
IV score. Table 2 shows the results of the models.

In all models, the number of high-risk drug 
combinations per 1000 drug administrations per patient 
was lower in the intervention group compared with the 
control group. In M0, the MiM+ intervention led to a 12% 
reduction (95% CI 6–19%; p=0·0004) in the number of 
high-risk drug combinations per 1000 drug 
administrations per patient. In M1, the MiM+ intervention 
led to a 14% reduction (8–20%; p<0·0001), and in M2 the 
MiM+ intervention led to a 12% reduction (5–18%; 
p=0·0008).

The secondary outcomes showed that the MiM+ 
intervention led to a 6–10% decrease in ICU length of stay 
in M0 (95% CI 5–14%; p=0·0021), M1 (4–13%; p<0·0001), 
and M2 (2–10%; p<0·0001). In addition to the primary 
outcome, the MiM+ intervention led to a 10–14% decrease 
in the number of high-risk drug combinations per patient 
in M0 (95% CI 5–20%; p=0·0013), M1 (6–21%; 
p=0·00082), and M2 (2–17%; p=0·013) , and an 11–14% 
decrease in the proportion of patients with at least one 
high-risk drug combination in M0 (4–21%; p=0·0042), 
M1 (6–22%; p=0·0017), and M2 (2–20%; p=0·020).

Regarding appropriate monitoring, seven types of 
high-risk drug combinations of the top 15 combinations 
had monitoring strategies that were feasible to evaluate 
based on our data sources, for example by therapeutic 
drug monitoring, adding gastric protection, and ECG 
ordering (appendix pp 35–36). These seven types 
accounted for 7642 high-risk drug combinations 

(94·7% of all 8073 high-risk drug combinations). In the 
intervention group, the proportion of appropriately 
monitored high-risk drug combinations was 44·0% 
(1240 of 2820) compared with 35·5% (1714 of 4822) in the 
control group. Therefore, the proportion of appropriately 
monitored high-risk drug combinations was 9% higher 
(95% CI 6–11%; p<0·0001) in the intervention group 
compared with the control group. Detailed results on all 
secondary outcomes are shown in the appendix 
(pp 37–39).

Discussion  
MiM+ led to a 12–14% decrease in the number of high-
risk drug combinations per 1000 drug administrations 
per patient, even after adjusting for clustering and 
prognostic factors. Secondary outcomes showed that the 
MiM+ intervention led to a decrease in length of stay in 
the ICU and an increase in appropriately monitored 
high-risk drug combinations. These findings advance 
the endeavour of mitigating the risks associated with 
drug combinations, promoting the avoidance of high-
risk combinations whenever feasible. In cases where 
such combinations are necessary, these findings 
underscore the importance of prescribing them with a 
better understanding of the potential consequences and 
using diligent monitoring measures to ensure patient 
safety.

To our knowledge, no previous studies have evaluated 
the effect of tailoring potential DDI alerts to the ICU 
setting on high-risk drug combination frequency, patient 
monitoring, or ICU length of stay. According to 
Shahmoradi and colleagues20 there has not been much 
research on the effect of CDSSs on patient outcomes. 
There are studies, outside the ICU, evaluating the effect 
of optimising CDSS drug alerts on process and 
practitioner outcomes. Helmons and colleagues21 report 
that suppressing low-yield alerts decreased the number 
of alerts by 55%, and the time spent on potential DDI 
checking by 45%. Parke and colleagues22 report that re-
categorising the severity levels of potential DDI alerts 
decreased alert over-rides by 6%. Paterno and colleagues23 
showed that tiering alerts by severity increased potential 
DDI alert compliance. These results show that optimising 
the CDSS’s potential DDI content might improve CDSS 
effectiveness.

We detected on average 0·82 high-risk drug 
combinations per patient in all included patients. 34·9% 
(3454 of 9887) of all included patients were exposed to at 
least one high-risk drug combination. For high-risk drug 
combinations we did not find studies suitable for 
comparison. For potential DDIs in general, our findings 
were consistent with other studies, which report 1–5 
potential DDIs per patient, and 58% of patients in the 
ICU having a potential DDI.24

This study has several strengths. First, this was a large, 
multicentre study with a methodologically strong study 
design—namely, the stepped-wedged randomised 

Variable Estimated incidence 
rate ratio

95% CI lower 
bound

95% CI upper 
bound

p value

Unadjusted M0 MiM+ 0·88 0·81 0·94 0·0004*

Adjusted M1 MiM+ 0·86 0·80 0·92 <0·0001*

Adjusted M2 MiM+ 0·88 0·82 0·95 0·0008*

Model M1 was adjusted for admission type (medical, emergency surgical, or elective surgical) and the presence of 
chronic obstructive pulmonary disease. Model M2 was adjusted for age, sex, admission type, Acute Physiology And 
Chronic Health Evaluation IV score, presence of cardiovascular disease, and presence of immunodeficiency. The result 
was considered significant when p<0·05.  MiM=Medication Interaction Module. *Significant result.

Table 2: Output for the unadjusted and adjusted generalised linear mixed-effect models
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controlled study design.17 Second, the number of patients 
evaluated per ICU was large. Third, using drug 
administrations instead of prescriptions to detect high-risk 
drug combinations ensured that patients were actually 
exposed to these combinations. Fourth, which drug 
combinations were considered as high risk was established 
in a Delphi study by an expert panel of intensivists and 
hospital pharmacists.16 Fifth, in addition to evaluating a 
high-risk drug combination frequency, we investigated 
whether intensivists monitored the patients exposed to 
high-risk drug combinations appropriately, which is an 
important effect of CDSSs. Finally, unlike other studies 
evaluating the effect of drug alerts on process and 
prescriber outcomes, we evaluated a patient-related 
outcome: the effect on length of stay in the ICU.

This study also has limitations. First, other factors 
influencing CDSS effectiveness, such as alert timing and 
design, were not investigated in this study.25 However, 
because all ICUs in this study used the same CDSS and 
patient data management system, attributing the causal 
effect of the intervention to tailoring the potential DDI 
alerts seems reasonable. Second, the number of ICUs in 
our study was small, which could lead to decreased 
power.26 However, the power was sufficient to detect a 
significant effect. Moreover, because of the small number 
of ICUs and the nature of the stepped-wedge design, 
evaluating ICUs individually was not feasible. Third, the 
slight differences in admission type and the occurrence 
of COPD between the control and intervention group 
might have led to slightly more high-risk drug 
combinations in the intervention group than the control 
group, and a difference in the frequency of specific high-
risk drug combinations between the groups. However, 
these differences are very small, and we have adjusted for 
these differences in model M1. Fourth, we did not 
measure possible patient harm associated with high-risk 
drug combinations. We did however assess the effect of 
our intervention on length of stay in the ICU, which was 
lower in the intervention group. This was not due to 
mortality, because ICU mortality was similar between 
the control and intervention groups when corrected for 
relevant confounders including disease severity (results 
not shown). Because length of stay in the ICU was a 
secondary outcome, we did not investigate the 
mechanisms contributing to its effects, which could be 
investigated in future research. Finally, this study was 
done with only one CDSS. Nevertheless, knowledge 
about which drug combinations are perceived as high 
risk in the ICU is transferrable to other CDSSs and 
patient data management systems. We expect that our 
high-risk drug combinations list to tailor potential DDI 
alerts is beneficial to other ICUs, also outside the 
Netherlands, because frequently occurring high-risk 
drug combinations are similar between countries.27

Our results are relevant to clinicians, hospital 
pharmacists, CDSS developers, hospital managers, 
quality-of-care officers, and researchers in the ICU 

setting. Other ICUs could use our list of high-risk drug 
combinations to tailor their potential DDI alerts and 
improve CDSS effectiveness. Additionally, our results 
might encourage others to establish a set of high-risk 
drug combinations for patients in other specific settings, 
such as neonatology, paediatrics, or oncology settings.

Regarding next steps, assessing adverse drug events 
related to high-risk drug combinations in patients in the 
ICU would be a valuable patient-centric measure to 
include in future studies on CDSS effectiveness. 
According to Fitzmaurice and colleagues,24 few studies 
have investigated that topic, probably because it requires 
comprehensive and time-consuming patient chart 
reviews and formal causality assessment. Using 
electronic triggers to capture adverse drug events related 
to high-risk drug combinations might partly alleviate this 
issue.19 Furthermore, potential DDI alerts could be 
further improved to decrease alert fatigue. For example, 
potential DDI alerts could be personalised by 
incorporating specific patient risk factors such as age, 
comorbidities, or renal and liver function; and be further 
optimised by adding variables to the potential DDI 
algorithm logic such as laboratory results, ECG results, 
or prescribed prophylactic treatments (eg, a proton pump 
inhibitor).28,29 Additionally, being able to start monitoring 
actions directly from the potential DDI alert window 
could help prevent patient harm. Lastly, in this study we 
used a 24-h interval to detect potential DDIs. Exploring 
potential DDI-specific time intervals on the basis of drug 
properties and patient factors merits future research. 
Our cluster randomised stepped-wedge trial showed that 
ICU-tailored potential DDI alerts significantly reduced 
the number of high-risk drug combinations, improved 
monitoring, and decreased length of stay in the ICU.
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