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Abstract
Acute pancreatitis (AP) is caused by acute inflammation of the pancreas and adjacent tissue and is a common source of 
abdominal pain. The current CT and MRI evaluation of AP is mostly based on morphologic features. Recent advances in 
image acquisition and analysis offer the opportunity to go beyond morphologic features. Advanced MR techniques such as 
diffusion-weighted imaging, as well as T1 and T2 mapping, can potentially quantify signal changes reflective of underlying 
tissue abnormalities. Advanced analytic techniques such as radiomics and artificial neural networks (ANNs) offer the promise 
of uncovering imaging biomarkers that can provide additional classification and prognostic information. The purpose of this 
article is to review recent advances in imaging acquisition and analytic techniques in the evaluation of AP.

Keywords  Acute pancreatitis · Diffusion-weighted imaging · T1 mapping · T2 mapping · Radiomics · Artificial neural 
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Introduction

Acute pancreatitis (AP) is caused by acute inflammation of 
the pancreas and adjacent tissue and is a common source 
of abdominal pain. According to the 2012 revision of the 
Atlanta classification, AP is characterized by two of the fol-
lowing three features: (1) abdominal pain consistent with 
AP, (2) serum pancreatic enzyme levels at least three times 
greater than the upper limit of normal, and (3) characteristic 
findings of AP on imaging [1]. While computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) are not 
strictly required for the detection of AP, they provide essen-
tial information in assessing disease severity and associated 

complications. The revised Atlanta classification of AP is 
based on morphologic imaging features [1]. Recent advances 
in image acquisition and analysis offer the opportunity to 
go beyond morphologic features. Advanced MR techniques 
such as diffusion-weighted imaging (DWI), as well as T1 
and T2 mapping, can potentially quantify signal changes 
reflective of underlying tissue abnormalities for the detec-
tion and classification of AP. In addition, advanced analytic 
techniques such as radiomics and artificial neural networks 
(ANNs) offer the promise of uncovering imaging biomark-
ers that can provide additional classification and prognostic 
information. The purpose of this article is to review recent 
advances in imaging acquisition and analytic techniques in 
the evaluation of AP.

Advanced MRI techniques

The standard T1-weighted and T2-weighted MRI sequences 
can assess morphologic changes of pancreatitis, including 
pancreatic enlargement, edema, and pancreatic and peri-
pancreatic fluid collections. Administration of intravenous 
contrast material can differentiate viable from necrotic 
tissue, thus differentiating between interstitial edematous 
pancreatitis and necrotizing pancreatitis. While these tra-
ditional MR sequences provide useful qualitative imaging 
features in the detection of AP, newer MR techniques such 
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as DWI, T1 mapping, and T2 mapping offer quantitative 
imaging features that have the potential to provide additional 
information.

Diffusion‑weighted imaging (DWI)

DWI is a MR imaging technique that quantifies the diffu-
sion of water molecules. The movement of water molecules 
within biologic tissues is not completely random, but is 
impeded by interaction with tissue compartments and cell 
membranes. DWI is performed with at least two strengths 
of diffusion-sensitizing gradient (b-value). The apparent dif-
fusion coefficient (ADC) is the slope of the line on the plot 
of the logarithm of relative signal intensity (y-axis) versus 
b-values (x-axis). Tissues with high cellularity demonstrate 
restricted diffusion and have low ADC values [2]. In AP, 
pancreatic inflammation and tissue injury restrict diffusion 
of water molecules; therefore, the ADC of AP has been 
reported to be significantly lower than the ADC of normal 
pancreas (Fig. 1). In a number of studies performed at 1.5 
T, the mean ADC of AP ranged from 1.18 to 1.62 × 10−3 
mm2/s, whereas the mean ADC of normal controls ranged 
from 1.51 to 1.78 × 10−3 mm2/s [3–7]. The reported sensi-
tivity and specificity using ADC values for detection of AP 
ranged from 77.5 to 93% and 72.7 to 87%, respectively [5, 
7]. Lower ADC values were also associated with increased 
severity of AP [4], as defined by the Balthazar score of the 
CT severity index of AP [8]. After appropriate treatment, the 
diffusion restriction would gradually decrease with normali-
zation of the ADC values [6].

DWI is also potentially useful in differentiating interstitial 
edematous pancreatitis from necrotizing pancreatitis. Diag-
nosis of necrotizing pancreatitis typically requires an intra-
venous (IV) contrast-enhanced exam to distinguish necrotic 
from viable pancreatic tissue. However, patients with AP 
may be critically ill with organ failure, which is a relative 
contraindication for IV contrast. Recent guidelines from the 
American College of Radiology state that the risk of nephro-
genic systemic fibrosis (NSF) among patients exposed to 
standard or lower than standard doses of group II gadolin-
ium-based contrast agents (GBCAs) is sufficiently low or 
possibly nonexistent. These group II GBCAs are no longer 
contraindicated in patients with renal insufficiency, and can 
be administered at the discretion of the radiologist [9]. Even 
without reliance on IV contrast, the ADC values of necrotiz-
ing pancreatitis have been found to be significantly higher 
than those of interstitial edematous pancreatitis (Fig. 2) [3, 
10]. The increase in ADC value is thought to be due to cell 
membrane rupture in the setting of necrotizing pancreatitis, 
which allows less restricted diffusion of water molecules [3].

In addition, DWI has shown incremental value in identi-
fying superimposed infection in pancreatic fluid collections 

[11]. Infected pancreatic collections contain bacteria and 
inflammatory cells that would not be present in a sterile col-
lection. Hence, these infected pancreatic collections have 
more restricted diffusion in the cyst wall and contents, and 
have lower ADC values relative to sterile collections. The 
presence of restricted diffusion has been more strongly asso-
ciated with infection than other imaging features such as 
T1 and T2 signal intensity, internal debris, septations, wall 
thickening, and wall enhancement [11]. Using a minimum 
ADC threshold of 1.012 to 1.090 × 10−3 mm2/s, it achieved 
a sensitivity of 67% and specificity of 96% in differentiating 
infected from sterile pancreatic fluid collections [11].

Fig. 1   A 17-year-old woman with abdominal pain and elevated 
serum amylase and lipase. a Axial T2-weighted MR image shows 
mild enlargement and increased signal in the pancreatic body and 
tail (arrow). b Axial apparent diffusion coefficient map shows region 
of interest with ADC value of 1.261 × 10−3 mm2/s, compatible with 
acute pancreatitis
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T1 mapping

T1 mapping is another emerging quantitative MRI tech-
nique that has potential application in pancreatitis imag-
ing. Pancreatic parenchyma has short T1 relaxation and is 
relatively hyperintense relative to other abdominal organs 
on fat-suppressed T1-weighted imaging due to a high 
amount of acinar protein and rough endoplasmic reticulum 
in the pancreatic cells [12]. Pancreatic disease states such 
as atrophy, fibrosis, and edema increase T1 relaxation time 

and decrease the signal intensity on T1-weighted images. 
The T1 relaxation time cannot be directly measured on 
traditional T1-weighted image due to variation of image 
contrast, which depends on scanner, type of T1-weighted 
sequence, and imaging parameters [13]. This necessitates 
the use of signal intensity ratios, which normalize the sig-
nal intensity of the pancreas relative to another organ, such 
as liver, spleen, or paraspinal muscle [14]. T1 mapping 
directly measures the T1 relaxation time of the region of 
interest. T1 relaxation time is a tissue-specific property 
that varies depending on magnetic field strength, and the 
T1 relaxation time is higher at 3 T compared to 1.5 T [15]. 
T1 relaxation time is otherwise relatively independent of 
imaging parameters [13], which facilitates comparison of 
T1 relaxation time of patients with different pancreatic 
pathologies and allows serial assessment of T1 relaxation 
time to monitor disease progression and response to treat-
ment. In the past, T1 mapping had limited applications in 
abdominal imaging due to long acquisition time required 
with traditional spin-echo images with its associated 
motion and respiratory artifacts. Novel scanner technology 
incorporating three-dimensional gradient echo and parallel 
imaging now enables acquisition of T1 maps in a single 
breath hold [12, 13].

Several studies performed at 3 T have shown increased 
T1 relaxation time for patients with chronic pancreatitis 
(CP) and autoimmune pancreatitis (AIP) compared to 
normal controls [13, 16, 17]. Patients with mild CP have 
been shown to have had a T1 relaxation time of 1099 ms 
(95% confidence interval 1032–1166 ms), compared to a 
T1 relaxation time of 797 ms (95% confidence interval 
730–865 ms) in normal controls (Fig. 3). Using a threshold 
T1 relaxation time of 900 ms, it was 80% sensitive and 69% 
specific for the diagnosis of CP, with area under the curve 
(AUC) of 0.81 [13]. T1 relaxation time also increased with 
increased severity of CP. The T1 relaxation times were 
865 ± 220 ms for normal controls, 1075 ± 221 ms for mild 
CP, and 1350 ± 139 ms for moderate-to-severe CP. A T1 
relaxation time threshold of 908.4 ms achieved an AUC 
of 0.751 for detecting mild CP and a T1 relaxation time 
threshold of 1131.6 ms achieved an AUC of 0.910 for 
detecting moderate-to-severe CP [16]. T1 relaxation time 
was also elevated in patients with AIP (1124.5 ± 95.7 ms) 
compared to normal controls (784.3 ± 41.8 ms), and the 
elevated T1 relaxation time of AIP patients gradually nor-
malized following steroid treatment [17]. Currently, there 
are no published reports detailing alterations in T1 relaxa-
tion time in patients with AP. Based on preliminary results 
from patients with CP and AIP, one would expect that T1 
relaxation time should be elevated in patients with AP. 
However, this assumption needs to be validated in future 
studies.

Fig. 2   A 72-year-old woman with abdominal pain and elevated serum 
lipase. a Axial contrast-enhanced T1-weighted MR image shows 
lack of enhancement in the pancreatic body (arrow) compared to the 
pancreatic tail (arrowhead), consistent with necrotizing pancreatitis. 
b Axial apparent diffusion coefficient map shows higher ADC value 
(1.753 × 10−3 mm2/s) in the necrotic pancreatic body (arrow), com-
pared to the viable pancreatic tail (ADC 1.490 × 10−3 mm2/s, arrow-
head)
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T2 mapping

Similar to T1 mapping that can quantify the T1 relaxa-
tion time, T2 mapping is a technique that can quantify the 
transverse relaxation time [15, 18]. Pancreatic edema and 
inflammatory changes in AP typically increase T2 relaxa-
tion, and account for the observed increased signal intensity 
on T2-weighted images. T2 mapping offers the potential to 
quantify the degree of pancreatic edema and inflammatory 
changes, which may provide diagnostic and prognostic infor-
mation [18].

In the past, long acquisition times and motion sensitivity 
have limited the application of T2 mapping in the abdo-
men. Newer sequences with k-space undersampling and 
respiratory gating are able to acquire T2 maps of the whole 
pancreas within a few minutes (Fig. 3) [18]. A few studies 
have reported T2 relaxation times of healthy volunteers with 
minor variations in imaging parameters. De Bazelaire et al. 
reported T2 relaxation times of the pancreas in 6 healthy 
volunteers as 43 ± 7 ms at 3 T and 46 ± 6 ms at 1.5 T, using a 
half-Fourier acquisition single-shot fast spin-echo (HASTE) 
readout sequence [15]. Hoad et al. reported T2 relaxation 
times of the pancreas in 4 healthy volunteers as 42 ± 20 ms 
at 3 T, using a balanced steady-state free precession (bSSFP) 
readout sequence [19]. More recently, a study with 88 
patients with presumed liver disease at 3 T showed that the 
T2 relaxation of healthy pancreas was 63.2 ± 13 ms. This 

study used a multi-echo spin-echo (MESE) without fat sup-
pression as the readout. The apparent difference in reported 
T2 relaxation times for healthy pancreas may be due to dif-
ferences in imaging parameters and whether fat suppression 
was used [18]. Vietti Violi et al. showed that the presence of 
pancreatic disease was associated with increased T2 relaxa-
tion times compared to healthy pancreas [18]. The presence 
of acute or chronic pancreatitis and fat infiltration showed 
increased T2 relaxation time of 70.7 ± 9.2 ms as compared 
to 63.2 ± 13 ms in healthy pancreas. The presence of pan-
creatic duct dilatation was also associated with increased T2 
relaxation time of 76.6 ± 16.4 ms compared to those without 
main pancreatic duct dilatation (59.2 ± 7.7 ms). [18] These 
preliminary studies showed that T2 mapping may provide 
quantitative biomarkers indicative of underlying pancreatic 
disease, and these results need to be validated in future stud-
ies with standardized protocols.

Radiomics

Advances in image post-processing and analytic techniques 
also offer opportunities for improved disease detection and 
classification. Both radiomics and artificial neural networks 
take advantage of the high-dimensional mineable data pre-
sent in medical images that may not be fully appreciated 
by humans [20]. Radiomics converts imaging data into 

Fig. 3   A 30-year-old woman with no known history of pancreatic 
disease. a, b Axial T1 maps in grayscale (a) and color (b). Region 
of interest in the pancreatic tail shows normal T1 relaxation time of 

796  ms. c, d Axial T2 maps in grayscale (c) and color (d). Region 
of interest in the pancreatic tail shows normal T2 relaxation time of 
56 ms
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high-dimensional mineable features, which have the poten-
tial to yield imaging biomarkers for disease classification 
and prognostication. Radiomics features can be classified 
into first-order, second-order, higher-order, and shape fea-
tures (Fig. 4) [20–22]. First-order features are histogram-
based methods that provide measures of central tendency 
(i.e., mean, median) and shape of the distribution (e.g., 
skewness and kurtosis). Second-order statistics are “texture 
features” that take into account the spatial relationship of 
attenuation of neighboring pixels (e.g., run length matrix, 
gray-level co-occurrence matrix). Higher-order statistics add 
a filtration step, such as wavelet or Laplacian of Gaussian 
filter, prior to feature extraction. Shape features are extracted 
from the 3D surface of the rendered volume [21, 23].

There is growing evidence that radiomics may provide 
useful imaging biomarkers for pancreatic tumor detec-
tion [24], classification [25–28], and prediction of patient 
prognosis [29–32]. A few studies have applied similar 
radiomics approaches to extract additional diagnostic 

and prognostic information in patients with AP. Lin et al. 
reported that contrast-enhanced MRI-based radiomics 
features were predictive of AP severity in a retrospec-
tive study of 259 patients with AP [33]. Three hundred 
and fifty-three radiomics features were extracted from 
the whole pancreas region of interest on portal venous 
phase MRI images. In the training cohort (n = 170), the 
radiomics model achieved accuracy of 85.6% in differen-
tiating between patients with mild AP and patients with 
moderately severe or severe AP. The radiomics model had 
a higher AUC (AUC = 0.917) compared to other clinical 
models (AUC range 0.744–0.750, p < 0.001). In the valida-
tion cohort (n = 79), the radiomics model achieved accu-
racy of 81.0% and AUC of 0.848, which was significantly 
greater than some of the clinical models (AUC range 
0.708–0.725). These results showed that the radiomics 
model was able to more accurately predict severity of AP 
in the early stage compared to some of the existing clini-
cal models [33].

Fig. 4   Radiomics features can be classified into first-order, shape, 
texture, and filtered features (e.g., wavelets and Laplacian of Gaussian 
[LoG]). Left panel shows examples of first-order features, such as M 
(mean) and standard deviation (SD) of the distribution of Hounsfield 
units. A normal distribution has skewness of 0 (black curve), whereas 
a negatively skewed distribution has skewness < 0 (red curve), and a 
positively skewed distribution has skewness > 0 (blue curve). Kurtosis 
a measure of extreme values (i.e., outliers) in the tail of the distribu-
tion. A normal distribution has kurtosis = 3 (black curve). Blue curve 
shows increased kurtosis (> 3) and red curve shows decreased kurto-
sis (< 3). Middle panel shows examples of texture features with gray-

level co-occurrence matrix (GLCM) and gray-level run length matrix 
(GLRLM). GLCM describes how often pairs of pixels with spe-
cific values in a specified spatial range occur in an image. GLRLM 
describes adjacent or consecutive pixels of a single gray level in a 
given direction. Shape features can be extracted by three-dimen-
sional surface rendering. Right panel shows wavelet and Laplacian of 
Gaussian filters. Wavelet filters use a series of high-pass filter (H) or 
low-pass filter (L) in the z, y, and x direction and create 8 filters of 
images from the original image. Laplacian filters are derivative filters 
used to find edges in images. Gaussian filter is a smoothing filter that 
is first applied to the image to reduce its sensitivity to noise
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Radiomics features have also been shown to predict com-
plications related to AP [34]. Iranmahboob et al. performed 
histogram analysis on ADC maps of 41 patients with AP, 
and showed that some first-order features were associated 
with the development of new complications, including new 
loculated fluid collection, pancreatic necrosis, venous throm-
bosis, or arterial pseudoaneurysm [34]. Kurtosis, a measure 
of extreme values (i.e., outliers) in the tail of the distribution, 
was able to predict new complications with 75.0% sensitiv-
ity, 91.9% specificity, and an AUC of 0.784 using a kurtosis 
threshold of > 2.47. The exact basis for increased kurtosis 
in patients who subsequently developed complications was 
unknown. There was speculation that increased kurtosis 
resulted from increased heterogeneity of signal intensity, 
which reflected underlying inflammatory and phlegmonous 
changes. The degree of these underlying inflammatory and 
phlegmonous changes may predispose patients to complica-
tions [34].

Furthermore, radiomics features have been used to predict 
recurrent AP after an initial episode of AP [35]. Chen et al. 
extracted 412 radiomics features from arterial and venous 
phase CT images from 389 patients with initial presentation 
of AP, with a mean clinical follow-up of 62.8 ± 6.7 months 
to determine the presence or absence of recurrent AP. The 
radiomics model predicted recurrent AP with 87.1% accu-
racy in the primary cohort and 89.0% accuracy in the vali-
dation cohort. The radiomics model AUC was better than 
the clinical model for both the primary cohort (AUC 0.941 
vs. 0.712) and validation cohort (0.929 vs. 0.671). These 
preliminary studies showed that radiomics features may be 
able to stratify disease severity and identify patients at risk 
for acute complications or recurrence better than our current 
clinical models [34, 35].

Artificial neural networks

Another emerging technology that has the potential to 
improve risk stratification and management in AP is the arti-
ficial neural network (ANN). ANNs pass the input values 
through a number of “hidden layers” of mathematical equa-
tions to develop a model that best fits the data [36] (Fig. 5). 
Multiple studies have used clinical variables and laboratory 
values as input values for ANNs for detection of pancreatitis 
[37], severity [38–40], portal venous thrombosis [41–44], 
organ failure [45–47], length of stay [48, 49], and survival 
[40, 50]. Many of these ANNs have outperformed logistic 
regression models or clinical scoring systems [38, 40, 42, 
45, 49]. Most of the current literature on ANNs and AP 
focuses solely on clinical and laboratory data as input. Only 
one study by Keogan et al. incorporated both radiologic and 
laboratory data in their ANN to generate their prediction 
[49]. In their study, a radiologist retrospectively reviewed 

the CT images of patients with AP and scored 12 radiologic 
features on a scale of 0, 0.25, 0.50, 0.75, and 1.0, as the input 
data. The radiologic features were not directly extracted 
from the images and potentially reduced the richness of 
quantitative imaging features that could be derived from the 
source images. To our knowledge, no published reports have 
directly used ANNs to extract quantitative imaging features 
from AP to derive predictions. However, there have been 
several recent exciting developments in applying ANNs to 
detect pancreatic ductal adenocarcinoma (PDAC), which 
may be translatable to AP.

One of the major barriers to incorporating radiologic 
data in ANNs is the need for large datasets with high-qual-
ity input data. ANNs typically require thousands or even 
millions of cases to train [51]. A complex image analysis 
problem such as detection and classification of AP requires 
manual segmentation of the region of interest (i.e., pancrea-
titis, background pancreas, pancreatic, and peripancreatic 
fluid collections), which is a labor-intensive process that 
necessitates expertise in imaging anatomy and pathology 
[52, 53]. Conceptually, training an ANN to generate predic-
tions based on imaging data involves two steps: (1) training 
the ANN to recognize normal pancreatic anatomy, and (2) 
training the ANN to recognize normal from abnormal [53]. 
The first conceptual task is well on its way to completion 
as current algorithms can automatically segment pancreas 
boundaries with > 85% accuracy [54–57]. Major progress 
has also been made in the second step, i.e., classifying the 
pancreas as normal or abnormal. Zhu et al. used a 3D deeply 

Fig. 5   Schematic illustrating basic concept of artificial neural net-
works. The inputs (yellow) are passed through many hidden layers of 
interconnected nodes (green), where the output of one layer becomes 
the input of the next layer, to generate the final output (blue)



Abdominal Radiology	

1 3

supervised segmentation network to classify CT scans from 
156 patients with PDAC and 300 normal controls, and they 
reported that the network had 94% sensitivity and 99% speci-
ficity [58]. Although speculative, this progress in automatic 
detection of pancreatic tumor may be translatable in detec-
tion of AP. More importantly, incorporation of quantitative 
imaging features (i.e., edema, necrosis) and clinical features 
may provide more comprehensive input data for the ANNs 
for risk stratification for patients with AP.

Conclusion

Advances in image acquisition and image analysis tech-
niques have the potential to provide quantitative biomarkers 
that may improve disease detection and risk stratification in 
patients with acute pancreatitis.
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